Parametric Equations Solver
Enter Parametric Equations
Understanding Parametric Equations
Common Parametric Curves
Circle
x(t) = r·cos(t)
y(t) = r·sin(t)
- r: radius
- t ∈ [0, 2π]
- Cartesian form: x² + y² = r²
Cycloid
x(t) = r(t - sin(t))
y(t) = r(1 - cos(t))
- r: circle radius
- Generated by point on rolling circle
- Brachistochrone curve
Spiral
x(t) = at·cos(t)
y(t) = at·sin(t)
- a: growth rate
- Archimedean spiral for constant a
- Logarithmic spiral for exponential growth
Lissajous Curves
x(t) = A·sin(at)
y(t) = B·sin(bt + δ)
- A, B: amplitudes
- a, b: frequencies
- δ: phase difference
Analysis Methods
Arc Length
L = ∫[t₁ to t₂] √[(dx/dt)² + (dy/dt)²] dt
Tangent Vector
T(t) = ⟨dx/dt, dy/dt⟩
Curvature
κ = |x'y'' - y'x''| / (x'² + y'²)^(3/2)
Applications
- Motion Analysis
- Computer Graphics
- Path Planning
- Physics Simulations
- Engineering Design
Advanced Parametric Analysis
Vector Analysis
- Position Vector: r(t) = ⟨x(t), y(t)⟩
- Velocity Vector: v(t) = ⟨dx/dt, dy/dt⟩
- Acceleration Vector: a(t) = ⟨d²x/dt², d²y/dt²⟩
- Speed: |v(t)| = √[(dx/dt)² + (dy/dt)²]
Differential Geometry
- Unit Tangent: T(t) = v(t)/|v(t)|
- Normal Vector: N(t) = T'(t)/|T'(t)|
- Binormal Vector: B(t) = T(t) × N(t)
- Torsion: τ = -B'(t)·N(t)
Special Curves and Their Properties
Epitrochoid
x(t) = (R+r)cos(t) - d·cos((R+r)t/r)
y(t) = (R+r)sin(t) - d·sin((R+r)t/r)
- R: fixed circle radius
- r: rolling circle radius
- d: tracing point distance
Cardioid
x(t) = a(2cos(t) - cos(2t))
y(t) = a(2sin(t) - sin(2t))
- Special case of epicycloid
- Heart-shaped curve
- Area = 6πa²
Astroid
x(t) = a·cos³(t)
y(t) = a·sin³(t)
- Four-cusped hypocycloid
- Area = 3πa²/8
- Arc length = 6a
Applications in Physics and Engineering
Projectile Motion
x(t) = v₀cos(θ)t
y(t) = v₀sin(θ)t - (1/2)gt²
- v₀: initial velocity
- θ: launch angle
- g: gravitational acceleration
Harmonic Motion
x(t) = A·cos(ωt + φ)
y(t) = B·sin(ωt + φ)
- A, B: amplitudes
- ω: angular frequency
- φ: phase shift
- Applications in vibration analysis
Robotics and Control
- Path planning
- Joint trajectories
- End-effector motion
- Collision avoidance