Parametric Equations Solver

Enter Parametric Equations

Understanding Parametric Equations

Common Parametric Curves

Circle

x(t) = r·cos(t)

y(t) = r·sin(t)

  • r: radius
  • t ∈ [0, 2π]
  • Cartesian form: x² + y² = r²

Cycloid

x(t) = r(t - sin(t))

y(t) = r(1 - cos(t))

  • r: circle radius
  • Generated by point on rolling circle
  • Brachistochrone curve

Spiral

x(t) = at·cos(t)

y(t) = at·sin(t)

  • a: growth rate
  • Archimedean spiral for constant a
  • Logarithmic spiral for exponential growth

Lissajous Curves

x(t) = A·sin(at)

y(t) = B·sin(bt + δ)

  • A, B: amplitudes
  • a, b: frequencies
  • δ: phase difference

Analysis Methods

Arc Length

L = ∫[t₁ to t₂] √[(dx/dt)² + (dy/dt)²] dt

Tangent Vector

T(t) = ⟨dx/dt, dy/dt⟩

Curvature

κ = |x'y'' - y'x''| / (x'² + y'²)^(3/2)

Applications

  • Motion Analysis
  • Computer Graphics
  • Path Planning
  • Physics Simulations
  • Engineering Design

Advanced Parametric Analysis

Vector Analysis

  • Position Vector: r(t) = ⟨x(t), y(t)⟩
  • Velocity Vector: v(t) = ⟨dx/dt, dy/dt⟩
  • Acceleration Vector: a(t) = ⟨d²x/dt², d²y/dt²⟩
  • Speed: |v(t)| = √[(dx/dt)² + (dy/dt)²]

Differential Geometry

  • Unit Tangent: T(t) = v(t)/|v(t)|
  • Normal Vector: N(t) = T'(t)/|T'(t)|
  • Binormal Vector: B(t) = T(t) × N(t)
  • Torsion: τ = -B'(t)·N(t)

Special Curves and Their Properties

Epitrochoid

x(t) = (R+r)cos(t) - d·cos((R+r)t/r)

y(t) = (R+r)sin(t) - d·sin((R+r)t/r)

  • R: fixed circle radius
  • r: rolling circle radius
  • d: tracing point distance

Cardioid

x(t) = a(2cos(t) - cos(2t))

y(t) = a(2sin(t) - sin(2t))

  • Special case of epicycloid
  • Heart-shaped curve
  • Area = 6πa²

Astroid

x(t) = a·cos³(t)

y(t) = a·sin³(t)

  • Four-cusped hypocycloid
  • Area = 3πa²/8
  • Arc length = 6a

Applications in Physics and Engineering

Projectile Motion

x(t) = v₀cos(θ)t

y(t) = v₀sin(θ)t - (1/2)gt²

  • v₀: initial velocity
  • θ: launch angle
  • g: gravitational acceleration

Harmonic Motion

x(t) = A·cos(ωt + φ)

y(t) = B·sin(ωt + φ)

  • A, B: amplitudes
  • ω: angular frequency
  • φ: phase shift
  • Applications in vibration analysis

Robotics and Control

  • Path planning
  • Joint trajectories
  • End-effector motion
  • Collision avoidance