Euler's Method Calculator
Step | x | y | dy/dx |
---|
Understanding Euler's Method
What is Euler's Method?
Euler's method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
Key Equations
- y(x + h) ≈ y(x) + h * f(x,y)
- h = (xₙ - x₀)/n
- yᵢ₊₁ = yᵢ + h * f(xᵢ,yᵢ)
- xᵢ₊₁ = xᵢ + h
Advanced Concepts
Error Analysis
Local truncation error: O(h²)
Global truncation error: O(h)
Stability conditions
Error propagation
Method Variations
Forward Euler
Backward Euler
Modified Euler
Predictor-Corrector
Applications
Population dynamics
Chemical kinetics
Circuit analysis
Heat transfer
Limitations
Step size sensitivity
Error accumulation
Stiff equations
Numerical instability
Numerical Analysis
Convergence
Consistency
Stability
Order of accuracy
Error bounds
Implementation
Step size selection
Error estimation
Adaptive methods
System solving
Related Methods
Runge-Kutta
Adams-Bashforth
Implicit methods
Multistep methods
Practical Aspects
Computational cost
Memory requirements
Parallel implementation
Software tools